/

- t———

‘ -ALLOCATION FOR -
«AUTHORIZATION HANAGENEN]}Vg

P={
o)
&
UL 7 i
AU o \I’)Mﬂli
<T
(|
=

/75 “John P. /(Hayber‘l Ph.D.
! e

o A B

@r 1 Aprid 178,

—— -,.--.W

This report was prepared for the

R Office of
W, NPP14-77-C-0386

B-K Dynamics, Inc.
15825 Shady Grove Road
Rockville, Maryland 20850

Approved for Public Release; Distribution Unlimited

387 57° @ Ber

78 07 26 057 ormwce

INC.




UNCLASSIFIED

SECURITY CLASSISICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATICN PAGE BEF Onn CONPLETINe PORM

2. GOVY ACCESSION NQ.| 3. RECIPIENT'S CATALOG NUMBER

1. REPORT NUMBER

: TR-3-251
(4
& TITLE (and Subtite) 5. TYPE OF REPORT « SERIOD COVERED

Allocation for Authorization Management

N g e O

6. PERFORMING ORG. REPORT NUMBER

8. CONTRACT OR GRANT NUMBER(s)

N00014-77-C-0386

7. AUTHOR(S)

John P. Mayberry, Ph.D.

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

B-K Dynamics, Inc., 15825 Shady Grove Road
Rockville, Maryland 20850

12. REPORT DATE
1 April 1978

13. NUMBER OF PAGES

11. CONTROLLING OFFICE NAME AND ADDRESS
Office of Naval Research, Code 450

800 North Quincy Strect

Arlington, Virginia = 22217
4. MONITORING AGENCY NAME & ADDRESS(!! different from Controlling Otfice) | 15. SECURITY CLASS. (of thia report)
Unclassified

15¢. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

i A aRIAL D -

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, i{ different from Report)

18. SUPPLEMENTARY NOTES

NIV At AR ML R A R,

2

&

TRV

19. KEY WORDS (Continue on reverse sids If necessary and {dentify by block number)

s LY WP R PISL T W Ry PP VA
e
£

PERSONNEL RESOURCE

MANPOWER ASSETS g

ALLOCATION
20. ABSTRACT (Ccntinue on reversa side if ry and identity by block ber) ;

his report explains the methodology fcr operationally calculating and
allocating manpower and personnel authorizations in the U.S. Navy.j§§\

ERAR A L AR R e st

CALS

DD ,5%M, 1473  =oition oF 1 nov &2 13 OBSOLETE UNCLASSIFIED

JAan 73
S/N 0102-014-5601 | — e
SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered)

|
Z
i

Vst NS

3
'J
4




A
[
:
;
i
%
i
I
g,
3
-
N
)
»
L B Y

INTRODUCTION

2w N

O W ~N O O,

10.
11.
12.
13.

APPENDIX I

Pt bt bt bt = R =t =t
. . . . . . . .
0 ~N O v W N -

Allocation for Authorization Management

TABLE OF CONTENTS

The Quantitative Apportionment Problem
Lower and Upper Limits on the Quotas

Quantitative Apportionment with Relative Priorities
Prohibition of Over-Manning in Under-Manned

Communities

Special "CNO Priority-1" UIC's
Computation of Pro-Rated Allowances (PRA)
Grade Allocation for CNO Priority-1 UIC's
Non-Integral Grade-by-Grade Allocation
Integral Grade-by-Grade Allocation
Allocation of Men by Grade to UIC's
Qualitative Priority

Which Quota Method?

conclusion

Methods of Apportionment

The Apportionment Problem

The Work of Balinski and Young
Notation and Definitions

Duality and the Quota Method

The Alabama Paradox

Huntington's Work: Divisor Methods

Consistency
The Dual Quota Methrod

!
White Section &7
r

Buff Section ;-

""‘"”"INCFD
CANION

ACCESSION for

NTIS
noe

| Os™ 'T.’G.’.'/ﬂﬂ@llh —bﬂﬂfS

Page

L

on

————

Sor SP C1al]

i

ST TR TR S

AN, #04 m £

iy Bt

2



L IR KU S St

YT

R T e

SR

I LTSN

”

P TPRTT
P S LB R

o

BN

-
i

TR SR

R AR

S o DSR2 AR A e
st st ist ol aton A

)
E
%
2

e BN

e

it

- 3
,
,

e R

APPENDIX I

II.
I1.
I1.
IT.
I1.
I1.

A O W N

APPENDIX I

II1.
111,
I1I.
I11.
[I1
I11.
II1.
ITI.
I11.
IT1.

REFERENCES

I - Description of Quota Methods

The Classical Quota Methods

The Primal Quota Method

The Dual-Quota Method

Direct Quota Methods

Other Quota Methods

Comments on the Ascending Quota Methods

IT - Theorems on Apportionment

General

Restrictions on Divisor Functions
Linear Divisor Functions

Primal Quota and Dual Quota Methods

Periodicity of Apportionment Solutions
Backtracking
Ties

1
2
3
4
.5 Influence of the Upper Bounds and Lower Bounds
6
7
8
9

Non-Integral Populations
10 Recommendations

ii

I1-1
I1-1
II-2
II-3
I1-6
i1-10

I1I-1

I11-1

IT1-3

III-6

I11-10
ITI-15
I11-18
I11-24
I11-27
111-28
ITI-29

I11-30

RS TR SR T IR,

ey e
3 N BB RS MY




7
1S %“
.% i
3 TABLES £
Z
' _ Page g
‘,ﬁ Table I i
’é
Calculation of Pro-Rated Aliowances for 3
Hypothetical UIC 8
¥ Table II
§ Example Illustrating Allocation Procedure 10 ;
; Y
‘. Table I1I
b 3
7 Non-Integral Allocation of Available Men
i Against Pro-Rated Allowances 12
- Table IV
? Non-Integral Allocation of Cumulative Available Men
a Against Cumulative Pro-Rated Allowances 12
8 Table V
% Integral Allocation of Cumulative Available Men é
A Against Cumulative Pro-Rated Allowances 15 1
% ]
¢t Table VI
2 Integral Allocation of Available Men Against
3 Pro-Rated Allowances 15
L #
& Table III.1
3
5 3 Example Showing That Both HM and EP
g Can Violate Upper Quota I1-7
S
: »
g
% ; Table II1.2
g, % The Apportionments Generated by Eleven Distinct
9 § Methods 111-20

iii




T AT AN D TR

TAT

T P

B e

S LR S

Eya e e

%]

i

BNt ORI, el S DI b

Introduction

ALLOCATION FOR AUTHORIZATION MANAGEMENT

This paper explains the method proposed by B-K Dynamics, Inc. for opera-

tionally calculating and allocating manpower and personnel authorizations in the

U.S. Navy. We are concerned with an allocation which is intended to be a useful

forecast of actual personnel assignments two years in the future. This proposal

incorporates many of the known important considerations, including:

()

{ii)

(iii)

(iv)

(v)

(vi)

predicted availability of personnel of various pay grades within each

com munity;

approved allowances by rating and by grade for each Unit Identification

Code (UIC);
eguity among UIC's of equal pricrity;
relative priorities associated with e~ch IJIC;

directives that (for certain special UIC's, called "CN O Priority-1

UIC's") authorizations must agree exactly with allowance’; and

substitution (within a rating) of one grade for another, when necessary
(minimizing both the number of such substitutions and the grade-

differences involved).




P e

In putting forward these proposals, B-K is acutely aware of several other factors,
which are important in themselves and could indeed be crucial to the success
and usefulness of the entire Authorization Management System, but which do
not form a part of the allocation procedure as we describe it herein. Among those

factors are the following:

(1) the division of all personnel among "distributable com munities"
-- which are often either designators or NOBC's -~ each of which is assumed
to be completely homogeneous and completely disjoint from all

the others;

(i)  the numerical approved allowances by grade within each distributable

com munity, which are simply taken as inputs by our procedure; and

(i1i))  the numerical prediction of available personnel by grade within
each distributable com munity, which are again simply taken as inputs

by our procedure.

Each of the "approved allowances" and "available personnel" are predictions as
of some specific date -- typically about 24 months after the time when the calculations

are performed.

For expository reasons, this paper will describe a succession of allocation problems,
beginning with the simplest quantitative apportionment problem and successively
introducing the cumplicating factors. We shall give a brief verbal description,

and an example, of each portion of our procedure.
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1. The Quantitative Apportionment Problem

This problem is deceptively easy to state: we wish to "divide a given whole
number into integral portions, which shall stand as nearly as possible in the same
respective proportions as a given set of numbers." The phrase "as nearly as possible"
admits a wide variety of different interpretations, and several of the most natural
interpretatinns have been found to produce results which possess serious flaws.
Because of the requirement in the U.S. Constitution that each state shall have:

a number of representatives in the Congress proportional to its population, the
above problem has received much attention -- potitical, legislative, and (more
recently) mathematical -- over the last two hundred years. Ref. [:Q M lﬂ provides

a fascinating sum mary of this history, and refs. Eﬂ M CI:\] and@ MN lﬂ present some
more recent results. Appendix I of this paper describes some of the flaws mentioned
above, and describes several of the most reasonable interpretations of the phrase
"as nearly as possible”; we merely remark here that the demand for "equity among
UIC's of equal priority" can also be interpreted in several ways, corresponding

to various possible "methods" of legislative apportionment; that the methods

known as "Quota" methods avoid the most serious difficulties; and that the several
known Quota methods have each their own idiosyncrasies in the context of th2
manpower-allocation problem. We shall refer to "the quota" of a particular UIC

as a definite number, calculated from the total to be apportioned and the proportions
to be employed; we defer until Appendix III below the question of exactly which

quota method will be used at each stage of our procedure.
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2. Lower and Upper Limits on the Quotas

Many apportioriment methods permit a minimum and a maximum to be

TR R A

imposed on the portion allocated to each UIC, over-riding the requirement for
proportionality or “fair share". Phase I of our allocation procodure is to compute

each UIC's modified fair share of the total personnel available in the distributable

com munity, imposing minima to ensure that each UIC receives at least one man

if possible.

3. Quantitative Apportionment with Relative Priorities

In case relative priorities can be assigned to the various UIC's which are
to share the resources of some com munity, we further modify the notion of "fair
share", taking now the ideal ratios as proportional to the respective allowances <

multiptied by the respective priorities. (We shall retain the condition that, whenever

T Oy .

possible, each UIC should receive at least one man from the com munity.) Thus,
if some UIC has an allowance of 10 slots and a oriority of 1.3, while a second
UIC has an allowance of 6 slots and a priority of 1.1, the allocation would be reckoned i

as if they had allowances of 13.0 and 6.6 respectively.
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4, Prohibition of Over-Manning in Under-Manned Com munities

Compliance with existing U.S. Navy personnel assignment policies requires
that two additional considerations be taken into account at this stage of our procedure:
first, if the com munity as a whole is not over-manned, then no UIC is to be over-
manned; and, second, if the com munity as a whole is over-manned, the relative
priorities are to be disregarded in the quantitative allocation. If analogous methods
are considered for use in manpower and personnel planning by other organizations,
it seems likely that the first of these rules would generally be retained, but 1-:he
second is perhaps more specifically tailored to the Navy's situation; in any case,
these two constraints help to ensure that high priorities for important UIC's will
not cause such undesirable effects as ships being crowded with more men than

can be effectively utilized, or even bunked.

5. Special "CNOQ Priority-1" UIC's

The last factor which we shall consider, as an influence on the initial quantitative
allocation, is the special treatment accorded to UIC's denoted "CNO Priority-
1", Those UIC's must have exactly 100¥% manning, by numbers and by grade, regardless
of the impact on other UIC'. In Phase I, if sufficient men are available in the
com munity as a whole, the correct total number of mea is withdrawn from the
quantitative allocat’o. process; if sufficient men are not available, we thenceforth
disregard the special status of those UIC's, and use their allowances and relative

priorities to compute a quantitative allocation in the ordinary way.
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Sections 1 to 5 above have completed the description of Phase I -- the
Quantitative Allocation Phase -- of cur allocation process. To summarize: within
each distributable com munity, the CNO Priority-1 UIC's are given their exact
allowance if possible; if the com munity is not over-manned, the total remaining
available personnel are allocated among the other UIC's, with the quota of each
determined by the product of its total allowance by its relative priority, subject
to over-riding minima of one man per UIC if possible and maxima equal to the
allowances; if the com munity is over-manned, the total remaining available personnel

are allocated among the other UIC's with quotas determined by allowances only.

6. Computation of Pro-Rated Allowances (PRA)

The next step is to pro-rate the quantitative allocations of each UIC among
the pay grades. This is done by multiplying the approved allowances for a UIC
by its "fiil-ratio" —- the ratio of its quantitative allocation to its total allowance.
Thus a UIC whose allocation was exactly equal to its total allowance would have
a fill-ratio of 1.00 (or 100%), and its pro-rated allowances (p.r.a.) would be equal
to its approved allowances; a UIC which was allocated, from some com munity,
only 10 men against a total allowance of 15 slots, would have fill-ratio of 10/15
= 2/3, and its pro-rated allowances would be two-thirds of its approved allowances;
a UIC which was allocated 12 men against allowances of 10 slots would have a
fill-rate of 1.20 (or 120%), and its pro-rated allowances would be 1.20 times its
approved allowances. (The fact that these p.r.a. numbers will generally not be
integers is not a problem, since we do not intend to actually allocate those numbers
of men ~the aggregate grade-distribution of the p.r.a. is unlikely to exactly match

the grade-distribution of available men anyway -- but merely to use them as a
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measure of the relative entitlement of the various UIC's for men of the various

grades.)

Instead of considering the allowances for the various grades separately,
we accumulate them before we pro-rate them. Table I presents the detailed computations
for a UIC with 2/3 fill-ratio and an allowance of 15 slots, distributed as shown
over grades. In particular, this UIC has an allowance of 4 slots at the G-3 level,
and 7 slots at grade G-3 or higher; the 2/3 fill-ratio, applied to those 7 slots, gives
a cumulative pro-rated allowance (c.p.r.a) of 4.67 slots at grade G-3 or higher,

and a pro-rated allowance of 2.67 slots at grade G-3.

When we perform the computations as indicated by the table, we find that
the sum of the pro-rated allowance figures in the last column is exactly equal
to the total allocation for this UIC; thus we may disregard small round-off errors.
Other advantages of working with the cumulative allowances will be seen in later

sections.

The calculations described in Section 6 constitute Phase iI of our proposed

procedure.
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178/6
Cumulative
Pro-Rated
Pay Approved Cumulative Allowances
Grade Allowance Allowance (C.P.R.A.)
G6-7 0 0 0.00
G-6 1 1 0.67
g-5 1 2 1.33
G-4 1 3 2.00
6-3 4 7 4.67
G-2 4 11 7.33
G-1 4 15 10.00
TABLE I
Calculation of Pro-Rated Allowances
For Hypothetica
-8-
i Ly 'Mﬂﬂ- floop s 3 #m» Vi -

(P.R.A.)

Pro-Rated
Allowances

0.00
0.67
0.66
0.67
2.67

2.66
2.67

i
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7. Grade Allocation for CNO Priority-1 UIC's

Having settled in Phase I the question of how many men each UIC
shall receive, and in Phase II decided the UICs' relative entitlement
to men of various grades, we proceed to determine the grade-distribution
of the men to be allocated to each UIC. We do this in successive stages,
first allocating men to fill the pro-rated allowances of highest grade,
then allocating men to fill the residue of the p.r.a. for the two highest
grades, continuing thus until we finally fill the residue of the p;}.a.
for all grades. (At that point, since the allowances were pro-rated
so that the total p.r.a. equals the total of the men available, we will

find that the available men are exactly used up.)

However, before we begin the detailed work of fairly sharing the
men of various grades among the competing UIC's, we consider any CNO
Priority-1 UIC's which received fill-ratio 100% in Phase I; they should

receive exactly the numbers of men of each grade specified in their

approved allowances. If this is possible, we assign the correct numbers
of men of each grade, and exclude those men and those UIC's from the
remainder of the entire allocation-process; but if an exact grade match
is not possible for all those UIC's, we disregard their special status.
(In this latter case, we base their grade-mix purely on their qualitative

priorities, as described beiow.
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y Pay Grade .
{2 P G-7 G-6 G-5 G-4 G-3 G-2 G-1 Total 2
§ UIC #1 .
t *Priority 1.10 :
: * Allowance 1 0 1 2 1 3 2 10 .
: Cum. Allow. 1 1 2 4 5 8 10 E
f C.P.R.A 0.80 0.80 1.60 3.20 4.00 6.40 8.00 E

P.R.A. 0.80 0.00 0.80 1.60 0.80 2,40 1.60 8.00

Cum. Aloc 1 1 2 3 4 5 8
Aloc. 1 0 1 1 1 1 3 8 E
i UIC #2 3
t *Priority 1.50 z
* Allowance 0 1 2 1 4 7 5 20 3
Cum. Allow. 0 1 3 4 8 15 20 . E
C.P.R.A 0.00 1.00 3.00 4,00 8.00 15.00 20.00 . 3
P.R.A. 0.00 1.00 2.00 1.00 4,00 7.00 5.00 20.00 §
Cum. Aloc. 0 0 3 3 7 13 20 ; %
) Aloc. 0 0 3 0 4 6 7 20 3
b
UIC #3 b
*Priority 1.00 Py
{ * Allowance 0 1 1 2 3 4 3 14 3
? Cum. Allow. 0 1 2 4 7 11 14 )
C.P.R.A 0.00 C.79 1.57 3.14 5.50 8.64 11.00 ?
P.R.A. 0.00 0.79 0.78 1.57 2.36 3.14 2.36 11.00 ;
Cum. Aloc. 0 0 1 3 5 7 11 E
Aloc. 0 0 1 2 2 2 4 11 E
Total g
(A11 UICs) E
. Allowance 1 2 4 5 8 14 10 44 g
Cum. Allow. 1 3 7 12 20 34 44 %
C.P.R.A 0.80 2.59 6.17 10.34 17.50 30.04 39.00 g
P.R.A. 0.80 1.79 3.58 4.17 7.16 12.54 8.96 39.00 s
Cum. Aloc. 1 1 6 9 16 25 39 ]
| 3 Aloc. 1 0 5 3 7 9 14 39 .
*Available 1 0 5 3 7 9 14 39 B
Cum. Available 1 1 6 9 16 25 39 ¢
\

TABLE I1I
Example ITlustrating

Allocation Procedure

Notes: Asterisks denote data input to the procedure; the “allowances" are numbers
of manpower slots to be filled; “C.P.R.A" denotes cumulative prorated
_ allowances (see text); "aloc." denotes men finally allocated by the process;
10 “totals" are obtained by summing over UICs; a UIC is a Naval installation,
identified by a "unit identification code." See text for details.
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‘ 8. Non-Integral Grade-by-Grade Allocation

G 0

LS R

At each stage, we apply the highest-grade men against the highest-grade

4t

p.r.a. not already filled; in effect, we place the p.r.a. in descending grade sequence,
place all the available men in descending grade sequence, and match up those

: sequences -- highest man to highest p.r.a. and Towest man to lowest p.r.a. Unfortunately,
this conceptually elegant process does not complete the actual allocation of men

to slots; as mentioned above, the p.r.a. are in general not integers. We may regard

this non-integral allocation as a prevocative proposal, like King Solomon's proposed

division of the child equally between the two women, which precedes and facilitates

L a realistic and equitable solution. Quota procedures prove tc be unnecessary in

converting this proposal into the required integral allocation.

& To clarify the procedure so far, we present an example involving three

WRTERTE" KTy

UIC's whose allowances and priorities are given in Table Il. The basic input data

of the problem -- including the available resources -- are indicated with asterisks;

z the other numbers given there are intermediate results.
Numerical results applicable to those three UIC's will be given as triples
; % | of numbers; thus the relative priorities are (1.10, 1.50, 1.00) and the allowances ,
; E are (10, 20, 14), so that the 39 available men must be allocated in proportion to
the products (11.00, 30.00. 14.00). Exact proportionality would give (7.80, 21.27,
: 9.93) but UIC #2 must not receive more than its allowance in this undermanned 2
3’ com munity, so we give it 20.00 and share the remainder, producing the exact %
. , quotas (8.36, 20.00, 10.64); a quota process then produces quantitative allocations ?}
O of (8, 20, 11), completing Phase I of the example. %
-11- ;
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Grades of.ivailable Men

G-7 G-6 G-5 G-4 G-3 G-2 G-1 Total

; 67 0.80 0.80
G-6  0.20 1.59 1.79
G-5 341 017 3.58
6-4 2.83 1.34 4.17

By Grade

G-3 5.66 1.50 7.16

Pro-Rated Allowance

6-2 7.50  5.08 ° 12.58
; 6-1 8.96  8.96
A Total 1.00  0.00  5.00  3.00 7.00 9.00 14.00  39.00

i

TABLE III

Non-Integral Allocation of Available Men
Against Pro-Rated Allowances

."w “h
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Grades of Available Men
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G-7 =6-6 =G6-5 =6-4 =6-3 =2G-2 =6-1

stae el ] v EAE LIS

G-7 0.80 0.80 0.80 0.80 0.80 0.80 0.80
Z6-6 1 1 2.59 2.59 2.59 2,59 2.59

=6-5 1 1 6 6.17 6.17 6.17 6.17
, =G-4 1

[y

9 10.34 10.34 10.34
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26-3 9 16 17.50 17.50
9 16 25 30.04
9

16 25 39.00
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By Grade

=6-2

Y
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=G6-1

Cumulative Pro-Rated Allowance

TABLE 1V

i e e A S

Non-Integral Allocation of Cumulative Available Men
Against Cumulative Pro-Rated Allowances
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The cumulative allowances are then pro-rated, giving the rows
labeled "C.P.R.A." in Table II; for UIC #1, the Cum. Allowances are
multiplied by 8/10, for UIC #2 the Cum. Allowances are multiplied by
20/20, and for UIC #3 they are multiplied by 11/14. Then the "P.R.A."
rows -- the pro-rated allowances -- are computed by differancing the

preceding rows, and Phase II of the example is completed.

Now we attempt to match the sequence of total pro-rated allowances
(in decreasing grade sequence) to that of the avaiiable men. We see
from Table II that there are P.R.A.'s of 0.80 for G-7's, 1.79 for G-
6's ..., 8.96 for G-1's, totalling 39.00 slots, and 1 available G-7,
16-6, ..., 14 G-1's (also totalling 39, of course). We allocate 0.80
of the top man to the P.R.A. for G-7's, the other 0.20 of him to the
P.R.A. for G-6's, and fill the remaining 2.59 G-6 slots with available
G-5's. The other 3.41 of the G-5's are appointed to fill G-5 slots,
and the remaining 0.17 6-5 slot must be filled with G-4 men. Continuing

in this way, we fill in Table III.

Table IV expresses the same information as Table III, but both

grades of available men and grades of pro-rated allowances are cumulated,

as indicated in the marginal labels for the rows and columns. Although
Table III is easier to understand, Table IV is much easier to compute,

as can easily be seen.
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Integral Grade-by-Grade Allocation

Next we produce integral grade-by-grade allocations {which can actually
be implemented), by simply rounding each entry in the Cumulative Non-Integral
Grade-by-Grade Allocation array to the nearest integer. (For our example, we
round Table IV to get Table V.) The result is then differenced to provide an Integral
Grade-by-Grade Allocation, which shows how many men at each grade will be
used to fill slots at each grade. (In the example, Table V is differenced to give
Table VI, which reveals, for instance, that none of the available G-4's will be .used

to fill a slot at either the G-3 or G-5 level, but that 2 of the 8 slots at grade G-3
will be filled by G-2's.)

These calculations conclude Phase III. (Note that some of the entries in

a5 38 AR

Table II have not yet been explained.)

10.  Allocation of Men by Grade to UIC's %
As mentioned above, we employ a sequence of several Quota apportion-~ §

ments to allocate men to the UIC's by grade. We do this by following the path {
of non-zero entries in the Integral Grade-by-Grade Allocation array from top ?
left to bottom right; each such entry involves a separate stage of the computation,
and an additional Quota apportionment. At each stage, the allocations of men f
to UIC's in the previous stages are taken as minima (considered as already com mitted), ';
while the total allocations (as computed in Phase I) are taken as maxima, with ‘”
the cumulative pro-rated allowances (down to the grade-level of the slots being ’i
:




o 1 e I

G-5

Grades of Available Men

G-4 G-3

G-7
o -
2, G-6
O
g G-5
gw
e G-4
[}
> Q
Pl G-3
(1o 2]
23 G-2
£ r—- .
= -
[ =4
G-1
Q
= G-7
} 5
S G-6
2
3 G-5
[ =
o
j; G-4
< G-3
<
[<}]
s G-2
o
é@ G-1
Total
UiCc #1
Cum. Aloc.
Aioc.
uIC #2
Cum. Aloc.
Aloc.
UIC #3
Cum. Aloc.
Aloc.

1 1 1 -1 1 1
1 1 3 3 3 3
1 1 6 6 6 6
1 1 6 9 10 10
1 1 6 9 16 18
1 1 5 9 16 25
1 1 6 9 16 25
TABLE V

Inteqral Allocation of Cumulative Available Men

against Cumuiative Pro-Rated Allcwances

Grades of Available Men

G-7 G-6 G-5 G-4 G-3 G-2
1
2
3
3 1
6 2
7
1 0 5 3 7 9
TABLE VI

Integral Allocation of Available Men
against Pro-Rated Allowances

Grades
G-7 G-6 G-5 6-4 G-3 G-2
1 1 2 3 5 5
1 0 1 1 2 0
/] 0 3 4 8 14
¢ 0 3 1 4 6
0 0 1 2 5 6
0 0 1 1 3 1
TABLE V11
Effect of Qualitative Priority Factor
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10
18
30
39

14

Total

12

39

Total

20
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filled) taken as the basis for propoﬂio;ality. The sequential nature of this computation
guarantees that, if a UIC happens to gain a fraction of a man in one stage, it will

tend to lose a fraction in the succeeding stage, and vice versa. In this way we

exploit the information in the Non-Integral grade-allocation matrix represented

for our example by Table IV.

Continuing with the example begun above, we see from Table VI that one
man of grade G-7 fills one slot of the same grade. From Table II we see that
the three UIC's have respectively (0.80, 0.00, 0.00) slots at grade G-7; thus the

one G-7 man goes to UIC #1.

The next entry in Table VI tells : . that 2 G-5 men are to be assigned against
pro-rated allowances of grade G-6. Table II gives C.P.R.A.'s, at grade G-6 and
above, as (0.80, 1.00, 0.79) for the three UIC's, and we perform a second Quota
computation which allocates these first three men as (1, 1, 1) -- one to each of
the UIC's. In othe* words, those two G-5 men have filled one G-6 slot in UIC
#2 and one G-6 slot in UIC #3.

The third entry in Table VI shows 3 G-5 men assigned to fill slots at the
6-5 level. The new Quota computation partitions 6 men (the three previously
allocated, and the three new men) against the total P.R.A.'s for G-5 and above
-- of which there were (1.60, 3.00, 1.57) in the three UIC's. There is a clear though
slight preference for assigning the sixth man to UIC #1 rather than to UIC #3,
so the cumulative assignment is (2, 3, 1), and we see that one of those last three

G-5's was assigned to UIC #1 and the other two to UIC #2.
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As these computations oroceed, we successively fill in the rows of Table

Il Tabelled "Cumulative Allocation"; of course, when we reach the last cell of
3 Table VI we are assigning the last of the G-1 men to the last remaining slots,
so the final entries in the "Cum.Aloc." row agree with the original result of Phase

I -- the quantitative allocation to the UIC's.

4

/ - Finally, the "ANlocation" rows in Table II are found by differencing the E
i preceding rows. This concludes the major portion of Phase IV. /
g
: 11.  Qualitative Priority .f
-
e It has seemed reasonable to modify the process described above in one

other respect, by introducing the notion of "Qualitative Priority". The purpose

of this last twist in the complicated path is to ensure that, if a UIC happens to

be deprived of a fraction in the quantitative allocation, it will be given the henefit

of any flexibility of grade-allocation in Phase IV.

Foea

Instead of using the C.P.R.A. (cumulative pro-rated allowances) as the

R R S P21

basis for proportionality in the successive stages of Phase IV, we shall use the

products of those C.P.R.A.'s with a Qualitative-Priority factor, which is the square

B s 4

of the ratio of the original basis for proportionality (the product of Allowance

by Priority) to the quantitative allocation actually made in Phase L
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In our example, the Phase-I proportions were (11, 30, 14) while the Phase-
I allocations were (8, 20, 11); thus the qualitative-priority factors are the squares

of (11/8, 30/20, 14/11) -- approximately (1.89, 2.25, 1.62), showing that Phase

I'treated UIC #3 relatively well, while UIC #2 was penalized by its not being permitted

to exceed its allowance of 20. Incorporating this factor into our computation,
the Allocation rows of Table VII result. Note that the allocations of Table II are
changed slightly -- both UIC #1 and UIC #2 are slightly upgraded, while UIC #3

is somewhat downgraded.

We should note that, generally, the effect of the qualitative priority factor
is this: a UIC which gained a fraction in Phase I will tend to have each of its pro-
rated allowances filled with the lowest grade of man who fills any slots at that
grade, while a UIC which lost a fraction in Phase I will tend to have each of its
pro-rated allowances filled with the highest grade of man who fills any slots at

that grade level.

Sections 10 and 11 constitute Phase IV, the final phase of our proposed

allocation-process.

-18-
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12. Which Quota Method?

As mentioned above, references [me] and [bMNQ] have introduced
new methods of apportionment, in addition to those previously described
and investigated in refs. [ﬁTA@) , [hRé] , and earlier works (ref. QMA
has a bibliography of earlier methods.)

For reasons given above, we recommend that the MFQ ("Major Fractions
Quota") method be used in the quantitative-allocation phase; it lies
midway between the two most extreme of the new Quota methods, and thus
can justify the claim that it does not tend to favor either the smaller
UIC's or the larger. (For example, the Quota method of [QMAJ , called
Primal Quota herein, if used to allocate a slightly undermanned community
would conclude that many -- perhaps all-- of the UIC's were tied for
their last man; thus a community with one man short would receive no

guidanre at all as to which UIC should be deprived of a man. Similarly,

the Dual Quota method if used for a community which was slightly overmanned,

would find so many ties that it would be of little value.) MFQ has
at least the advantage that it will be as distant as possible from both

those risks.

When Phase IV is performed, we recommend that the Dual Quota method

be employed for guiding the gra&eQallocation among UIC's. Under the

Dual Quota method, every UIC will be tied for the first man to be allocated,

and there will be a strong tendency for every UIC to receive one man
before any receives its second (though that tendency will not overcome

a large discrepancy in the ideal ratio of their manning.) As a result,
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x when the higher-grade availables are allocated (prior to the lower-grade
availables) there will be a tendency for each UIC to receive at least
one man at the highest grade which occurred in its allowance; this will
have the desirable consequence that the "team leader", or highest-grade
slot in an UIC, will tend to be filled with a man of the appropriate
grade. The attractiveness of this result, in the context of a team
of specialists, is evident, and would conform with a policy goal in

the allocation of U.S. Navy enlisted men.

For these reasons we propose that Dual Quota should be used for

Phase IV of the above procedure, even though MFQ is used in Phase I.

IOy ames A 93

The detailed algorithms for both Dual Quota and MFQ are given

above.

R s e

13, Conclusion

This paper has proposed a procedure for allocating available Naval
manpower resources to requirements, in case where the tasks are all

similar in nature, but where a hierarchy of skill-- or training-levels

N

exists. The procedure depends on the availability of one or more appropriate :

apportionment methods, such as have been recently developed for legislative

apportionment, The qualitative acceptability of the procedure is currently

1 e i 8 o

being evaluated in trials which are performing the computations necessary

to allocate the Navy's entire enlisted force.
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METHODS OF APPORTIONMENT

Il The Apporticnment Problem

The apportionment problem is to divide a given integer h, called the @ggg,
into s integral portions 215 Ags wees Ags respectively proportional to s given numbers
Pys =+ Pgs subject to over-riding minima F1s eees T and maxima bl’ vees bs’ If the
portions could be non-integral, an easy calculation (formalized below) would determine
numbers, called the exact quotas, which would give the correct apportionment.
But the portions must be integers, and therefore suitable integers must be used

to approximate the exact quotas; we may think of an apportionment method as

an effective interpretation of the words "suitable" and “to approximate".

This problem, which must be solved decennially to determine the number
of seats for each state in the U.S. House of Representatives, has an extensive
history; ref EJ M AJ provides a fascinating introductory survey. We shall therefore
use terminology appropriate to that specific application, and call the given numbers

Pys +ees P the populations of the respective states 1, 2, ..., s.
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E . 1.2 The Work of Balinski and Young

9 % In refs [-_N M Cl_i] and [Q M iﬂ, Balinski and Young showed that a new apportionment
method, the Quota Method, satisfied three axioms intended to summarize the

essential desiderata. The first axiom -- "monotonicity" -~ excludes the Alabama

[OOSR
.

paradox (see L5 below). The second axiom -- " the quota condition" - limits the

24 ygr'g pieacr t iy

& discrepancy between the exact quota and any acceptable apportionment. Their

third axiom - "consistency" — excludes capricious or discriminatory methods.

Balinski and Young then proved that the Quota method is the unique method to

TR Lot A (Y

byt satisfy all three axioms.

RSP

A i L3 Notation and Definitions

Bold-face letters denote s-tuples of real numbers indexed by i, where i

is restricted to be one of the integers 1, 2, ..., s, and all sum mations are over

i. An apportionment problem is aset (p, r, b, h) as above, with P T by and h
integral, p;> 0, 0%r, £b,and %, r; = hy£ hZh* =2 b, A problem-

set (p,r, b)is the set of all apportionment problems which share the given values
of p,r, andb. An apportionment for the problem (p,r, b, h) is an s-tuple a =
‘ ‘ ( a3y e s as) of integers called portions, with rs £ a,

i
Za1=h.

4 b; for each i, and

I-2
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An apportionment solution is a function f, which to any such problem assigns

an apportionment a =f ( p, r, b, h). Note that the "pure" problem, without maxima
or minima, may be identified with the special caser =(0,...,0)and b =(h, h,
«sh). An apportionment method is a non-empty seu of solutions. A method M

is called monotone if, for every problem an?i anyfinM, f(p,r,bh)=<f(p,

1, b, h+1) unless h = h* so that the right side is undefined.

We define the exact quotas g by

q; = max (r; , min (b, A .p;)), where A= Amis

chosen so that Z q; = h.
Since g(A) =2 max (ri, min (bi’ A .pi)) is a continuous non-decreasing function
of A, with g(0) = h,and g(A)= h*for /\ large enough, the q; defined above

are unique (even though/‘ (h) may not be.) Lower quotas and upper quotas are

defined respectively by f i T qu (the greatest integer not exceeding qi)
and ug = ['q]"l (the least integer not less than qi.) An apportionment method

is said to satisfy lower quota if always f(p,r, b, h) é_f( P, I b, h) ; to satisfy
upper quota if always f (p,r, b, h) £ u(p,r, b, h); and to satisfy quota if bcth
conditions hold. There is excellent justification, in the context of the manpower
allocation problem, for requiring that an apportionment method should always
satisfy quota; e.g., if the "fair share" of a UICis 3.89 men from a certain rating,
any method which failed to satisfy quota by allocating fewer than 3 or more than

4 men would surely be unacceptable.

Note that the quota condition defined by Batlinski and Young in [(}M IS] and
@M c IQ differs in several respects from the condition defined above: (i) their

formal treatment disregarded the possible importance of upper bounds b on the
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f portions; (ii) they did not define an e;act quota for the constrained problem-- ?z
i ; i.e.,the problem with lower bounds r on the portions; (iii) their definition of %

ypper and lower quotas for the constrained problem permitted a difference of l %
» more than 1 between them (as shown by their example, Table 6, p. 718, of EQ MA].) i

T T

As pointed out in [Q MNUT, the distinction actually causes a difference of one

seat in the apportionment for their hypothetical 19848 populations of the U.S.

1.4 Duality and the Quota Method ‘ %

Once maxima as well as minima are considered in apportionment problems,
a duality can be defined in which: maxima correspond with minima; an upward

induction (using house sizes increasing from h, to h*) corresponds with a downward

induction; "greater than" corresponds with "less than"; and lower quota correspunds

with upper quota.

Under this duality, the Quota Method of Balinski and Young will correspond
with another algorithm, which I have called the Dual Quota (DQ) Methou, and
which will have exactly as much basis for acceptability as the Quota Method - -
which willhenceforth be called the Primal Quota (PQ) methad. Similarly, from
the proof that the Primal Quota method is the unique method satisfying the three
axioms of Balinski and Young we can produce a proof that the Dual Quota method
is the unique method satisfying three equally-reasonable axioms -~ viz, monotonicity,

quota, and a "dual-consistency" condition wiaich is dual to their "consistency"

condition.
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Examples have shown that Primal Quota and Dual Quota solutions will

often differ; Appendix Il below shows why it is unlikely for them to agree. Further-

more, we have devised algorithms which permit us to define a spectrum of methods,

I T e At L AR ST e i R

each of which satisfies both quota and monotonicity, and each of which avoids
capricious or abritrary behavior by employing a divisor function -- see section

1.6 below. Those other methods will be described in Appendix II.

1.5 The Alabama Paradox

The importance of monotonicity can ve seen by considering the "Vinton"
or "Hamilton" method -- viz: "Give each state its lower quota, and give one more
seat to each of the h-Z‘ [i states with greatest remainders g5 - [i " The pure
problem with p =(1, 3, 3) makes q (3) = (3/7,9/7,9/7) and q (8) = (4/7, 12/,
12/7) and thus produces the apportionments (1, 1, 1) when h = 3, and (0, 2, 2) when

h = 4; the first state loses a seat when the house increases from 3 to 4. Much
colcrful discussior, has made clear that the Congress finds this"Alabama Paradox"
(named in honor of its first victim) unacceptable, and consequently the Vinton
method, although frequently used between 1850 and 1910, is no longer seriously
proposed for the apportionment of Congress. Neither do we propose to use it

in our manpower allocations.

At
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1.6 Hurtington's Work: Divisor Methods

Any monotone solution f may be characterized by identifying, for any p,
r, and b, the sequence in which the states successively gain seats as the house

%*
increases from hy toh, +1, ..., h . The divisor methods comprise a family of

monotone methods, each of which is defined by a divisor function d (a); the state
which gains the (h + 1) ‘th seat is one which achieves the minimum of d(ai)/pi,
where a = (al, 85 wus as) =f(p, 1, b, h).is the apportionment for a house cf _size
h. (Huntingtun considered the maximum of p;/d (ai); we have reformulated the

condition to avoid division by zero.)

A reasonatle divisor function d must be a monotone-increasing function,
and must satisfy a<d (a) <a + 1 for all non-negative integral a. (See Theorem

3 of Appendix IIL)

Huntington's paper, ref. E\ R C:], describes five methods, corresponding

to these five divisor functions:

(1) d (a) = a, called by Huntington the method of Smallest Divisors (SD);

(i) d(a) = a+1l, apparently first devised by Thomas Jefferson but
known as the method of d'Hondt, and called by Huntington the method
of Greatest Divisors (G D);

(i1) d(a) = a+3, apparently due to Daniel Webster but often called
the method ot Major Fractions (MF);

(iv) d(a) = 2a(a+1)/(2a+l), called the method of the Harmonic
Mean (HM); and

(v)  d(a) =va(a+1), called by Huntington the method of Equal Proportions
(EP).

R 25 T < T Y




Note that the first two represent the extreme possibilities, and the
last three are respectively the arithmetic, harmonic, and geometric

means between those extremes.

Although other functions, such as d (a) =2a+1 - /éhz;—:—Is,

d (a) = 0.3a + 0.7 «éTZZ"I'BTE', et al., could be used for the divisor
function d (a), only the above five methods seem to have been seriously
considered between the publication of Huntington's analysis [:MTAQJ

in 1921 and the appearance of [NMC@J in 1974. The latter paper stated
that no Huntington method satisfies quota, a result which was apparently
not emphasized in the many congressional discussions between 1921 and
the passage in 1941 of P.L. 291, "An Act to Provide for Apportioning...

Congress ... by the equal proportions method".

In fact, GD is the only one of the above five methods -- and probably
the only divisor method -~ which satisfies lower quota; and, dually,
SD is the only one of the five -- and brobably the only divisor method
-- which satisfies upper quota. (See Theorem 2, ref. EQMAJ . The
proof, which was omitted, is straightforward -- even when upper and

lower bounds are included, and even when the above narrower derinition

of "upper quota" is used.)
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1.7 Consistency

We express in our notation some salient portions of the definition of "consistency"

from p. 4604 of ref. (NMCA] .

For any solution f, we define the eligible set at h + 1 to be the set E (h + 1)

=\ l f; (h) < g; (h+1))of states which could receive the (h + 1) ‘th seat

without violating upper quota; fi (h) is the previous portion of the i'th state.

A monotone method M is called consistent if the choice of state to receive
the (h + 1) 'th seat is governed entirely by priority among the states eligible at
( h + 1), where relative priority between any two states is determined only by
their populations and (im mediately) previous portions. Without completing the
details, it is clear that this consistency condition explicity protects the solution
from violating upper quota, but not from violating lower quota; it is thus rather
natural that the Balinski-Young Quota method -~ the only method consistent in

the above technical sense which is monotone and satisfies quota - is related to

G D, which intrinsically satisfies lower quota.

In fact, the (Primal) Quota method assigns the next -- i.e., the (h + 1) ‘th--

seat to a state which achieves the minimum of (a; +1)/p;, where the minimum
is taken over the set E (h + 1) of those states eligible to receive the (h + 1) 'th

seat without violating upper quota. Thus GD and Primal Quota place the states

in the same priority order, but GD does not impose the eligibility requirement.

I-8
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The proof that the PQ method satisfies upper quota is easy; it is only necessary
to observe that E (h + 1) can never be empty. Although it is "natural” that PQ
"inherits" from GD the property of satisfying lower quota, the proof, that PQ

actually does satisfy lower quota, is far from trivial,

1.8 The Dual Quota Method

The cuncepts of dual-eligibility and dual-consistent can be derived from
the above definitions; if we consider the sequence of states which lose seats as

the house decreases from h* - 1, ..., h, , we define the dual-eligible set at h as

the set Eh) = {i f]. th+1) > g (h) } of states which could lose the (h + 1)'th

seat without violating lower quota. We then define a solution f as dual-consistent

if the choice of losing state is governed by priority within the dual-eligible set,
where relative priority of two states is determined by their populations and previous
(i.e., at the next-higher house-size) portions. It is natural that in this case an
analog of the method of Smallest Divisors (which intrinsically satisfies upper quota)
has the desired properties. The modified proof mentioned above may be transiated

mechanically into a proof of the following

Theorem: There exists a unique dual-consiste1t house-monotone method satisfying

quota.

That method is called the Dual-Quota method (D Q), and is defined in section

I1.3 of Appendix il
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APPENDIX II

DESCRIPTION OF QUOTA METHODS

A R R KNS

It1 The Classical Quota Methods

We give first the defining algorithms for the Balinski-Young Primal Quota
Method (introduced in Gﬂ MC IQ , which exposed the possibility of a method being
both monotone and quota) and the Dual Quota Method. The former builds upward

from h,, and the latter builds downward from h*.

II.2  The Primal Quota Method

The Primal-Quota (P Q) method is the set of all solutions Y defined

as follows:

M ¥ (por,b,hy) =r, forallij

(i)  Given 3 = }01. (p,r,b, h)forsome h with hy £ h < h*, define
E(h+1)asthe non-empty set { i ' 3 £ g (h+1)},and
let k be some member of E (h + 1) such that (ak +1) /pk = min

Gai + 1)/pi> , where the minimum is taken over E (h +1); then

we set }”k (prb, h+1) = a +1,7pi (p,ry by h+1) =a for

ani £ k.
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Various solutions of the PQ method result, according to how k is selected in

the case of a tie for the minimum.

IL3  The Dual-Quota Method

The Dual-Quota method (D Q) is the set of all solutions 7/ defined as follows:

) ¥ (pryb,h*) =b, forani;

(1) Given 3; = )01 (ps 1, by h) , we define the set E ' (h-1) =

i lai > g (h-1)) ; et k be astate in E ' (h-1) such that ;
(ak - 1)/pk = max «ai - 1)/pi> , where the maximum is over ; ?
E'(h-1); then we set }l’k( Py 1y b, h-1) = 3y -1, }”i (p,r, b, h-1) ok
= a, fori # k. i

&

Various solutions of the DQ method result, depending on how k is selected when

two or more states tie for the maximum.

Note that, in the DQ algorithm, we are deciding whether the i'th state

shall retain its 3 seats, or only 3 -1; thus, evaluating the divisor-function at the

smaller of the two portions being considered, we get d(ai-l) = a;-1. In the PQ
algorithm, while deciding whether or not to add another seat to the 3 which it
had previously, we were also evaluating the divisor-function at the smaller of

the two portions being considered, obtaining d(ai) =+l

I1-2
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1.4 Direct Quota Methods

The Primal Quota method, by its definition of the eligible set E (h+1), explicitly
prevents any solution _>_’ from violating upper quota. It is stated without proof
in [N MC AJ and [:Q M Ig that G D satisfies lower quota; the proof is not difficult.
One may say that any solution _}fof PQ .atisfies lower quota "because of* the
similarity between PQ and GD; in any case, [:Q M A:] proves that PQ does satisfy
quota. (That proof is far from trivial; our inclusion of upper limits, and the slight
change in our definition of lower quota, requires some added complication but

no essential change in the proof.)
Similarly, the Dual Quota definition explicitly precludes any solution >p of
DQ fromviolating lower quota, and (perhaps "because of" the similarity between

DQ and SD) such a Y&annot violate upper quota either.

Let us now generalize the definition of I.2. The direct ascending quota

method with divisor d is the set of solutions )” defined recursively as follows:

M P i(prbh) =ry;

()  Given a, = Y, (p,r,b, h) forh, £ h L h, define the set § (h+1)
of superciigible states at h+1 to be the set of states which could
receive the (h+1) ‘th seat without violating quota, and let k be
a state in S(h+1) such that d (ak)/pk =min d (ai )/p; , where the
minimum is taken over S (h+1). Then define )0’( (psr, b, h#l) =
3 +1, yi (p, 1y b, h+l) = a; fori # k. If at any stage the set
S (h+1) is empty, we say that the direct ascending quota (d.a.q) method
fails for that divisor-function d and that problem { p, r, b, h).

I1-3
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It is clear that the d.a.q. method with divisor-function d(a) = a + 1

is simply the PQ method, and we know that S (h+l) is never empty in

that case. Unfortunately, we have acquired empirical evidence supporting

the

Conjecture: Every d.a.q. method, except the PQ method, fails for some

problem.

Discussion: We can show that, for any divisor of the form d(a) = a + ¢
with 0 = ¢ < 1, there is a problem which results in an empty S (h + 1)
at some stage; it sufficies to take the pure problem with two components
of p having the values x, and 2.x components having the values 1,
where' X 1is an integer exceeding (1 - c)'1 + 2, The only standard
methods which do not have divisor-functions of the form a+c are HM
and EP, and both their divisor~-functions succumb to the same examples

with ¢ = 1/2. There remains the possibility that some baroque divisor-

function, such as those mentioned at the end of section II.6 above,

might happen to allow a d.a.q. method.

One can define the dual concept of a direct descending quota (d.d.q.)

method with divisor d; the only caveat is that we must use d (ai -1),
We note that the d.d.q. method

as mentioned in section II.3 above.

with divisor-function d{(a) = a is simply the DQ method, for which the

analogous set S'(h-1) is never empty. Dual to the previous conjecture

is the

Conjecture: Every d.d.q. method, except DQ, fails for some problem.

11-4
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It is clear that the d.a.q. method with divisor-function d(a) = a+1is
ﬁ simply the PQ method, and we know that S (h+1) is never empty in that case.
ﬁ Unfortunately, we have acquired empirical evidence supporting the
Conjecture: Every d.a.g. method, except the PQ method, fails for some problem.
E v Discussion: We can show that, for any divisor of the form d(a) = a + ¢ with

s

0= ¢ <1, there is a problem which results in an empty S (h + 1) at some stage;

it sufficies tq take the pure problem with two components of p having the values

& X, and 2.x components having the values 1, where x is an integer exceeding

(1- c)'1 + 2. The only standard methods which do not have divisor-functions

succumb to the same examples with ¢ =1/Z. There remains the possibility that

i some baroque divisor-function, such as those mentioned at the end of section
H

I1.6 above, might happen to allow a d.a.q. method.

One can define the dual concept of a direct descending quota (d.d.q.) method

with divisor d; the only caveat is that we must use d (ai -1), as mentioned in section
I.3 above. We note that the d.d.q. method with divisci~function d(a) = a is simply
the DQ method, for which the analogous set S'(h-1) is never empty. Dual to the

previous conjecture is the

Conjecture; Every d.d.q. method, except DQ, fails for some problem.
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In short, if we attempt to generalize the notion of consistency (in the sense
of refs [N MC A] and @M A] ), and to define a direct quota method to be either

a d.a.q. or a d.d.q. method, we do not find any new apportionment methods which

satisfy quota and are monotone.

I.5  Other Quota Methods

If, in spite of the sombre conjectures of the preceding section, we attempt
to define an ascending quota method for some divisor function d other than d(a) = a+1,
we find, for many problems, that a sequence of non-empty supereligible sets S(h,+1),
S(h+2), ..., S(h*), is generated, so that a systematic monotone solution is generated
which satisfies quota while showing great similarity to one of the Huntingtonmethods.
In order to have a method which is always applicable we must allow for the eventuality
that the set S(h+1) is empty. When such an eventuality arises, the previous apportionment
cannot be extended to an apportionment of the next-higher house without violating
monotonicity, and therefore must be excluded from the solution which is being
generated by the algorithm; in other words, we must simply back-track, choose
the next-best in place of the minimum previously chosen, and attempt to proceed.

("Next-best" means by "best” the extremum being sought -~ minimum of d(ai)/pi

for the ascending methods.)
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Since there do exist solutions of the type we seex — monotone methods
which satisfy qucta -- it is clear that we must eventually find one. Even very
simple examples show that, in general, different divisors will result in different
methods; Appendix III explains some of those differences. Although we have as
yet few theorems limiting the amount of "backtracking" which might be needed,
in practice there is rarely any backtracking at all. In any case, the solutions found
in this way are neither arbitrary nor capricious, and clearly deserve to be called
systematic, even though they do nct satisfy the Balinski-Young definition of "con-

sistency".

This discussion was intendad to motivate an algorithm which we shall proceed

to define, after some further preliminary definitions.

Any monotone apportionment solution f, applied to the problem-set ( p,
Y, b) -~ by which we mean the set of problems ( p,r, b, h) as h ranges from

hy = Z ry to h¥ =Z b; -- determines a sequence, to be called the gaining-state

index-sequence GSIS ( f, p, r, b), which is a sequence of length h*-h, whose j'th

term indicates the state which gains a seat when the house increases from
hetj-1 to htj. Sincef(p,r, b, h,)=rand f(p,r, b, h*) =b, we see that

GSIS ( f, p, r, b) must contain exactly b;-r; occurrences of the index i.

ek oid

Not only does such an f determine a GSIS, but it is clear that we can specify
any monotone apportionment function f entirely by giving the mapping from the

set PS of all problem-sets to the set of positive finite-dimensional integral vectors.

11-7
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That mapping may be arbitrary, provided it assigns to any ( p, r, b) a GSIS which
includes exactly bi'ri instances of the index i. Thus the problem of defining an
. apportionment function may be aided by defining a GSIS for each problem-set

“in some reasonable way. Furthermore, whether or not f satisfies quota when applied

. ’
ST oo 5, hu s o AN SASTHE hINC AB a P e R ML

to a particular problem-set ( p, r, b) can be determined from the properties of

P

the GSIS ( f, p, r, b); it is merely necessary to check the number of occurrences
* 5 of the index i in the first j terms of the GSIS, for each i and j, against the

exact quota at house size h,+j for the i'th state. We thus define, for each problem-

t set ( p, r, b), the set QIS { p, r, b) of quota index-sequences for ( p, r, b), which

P includes exactly those GSIS which define apportionment functions satisfying quota.

‘tow we define a relation called d-precedence (which depends on the divisor
; t function d) between elements o” . o of QIS(p, r, b), as follows:

L o d-precedes & if

s M) & =g foral 1,2,

i) oopy # & pfus

(i) d@a Mo, < da.Vpy, where k = g%, K = g7y

and a is the apportionment of ( p, r, b, h+) induced by the initial

sequence common to & and & .

(The relation is clearly transitive, irreflexive, and therefore acycltic.)
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Now we define an ascending quota solution (a.q.s.) with divisor d as a

function f which assigns to every problem ( p, r, b, h) an apportionment determined

by applying to the problem-set ( p, r, b) some quota index-sequence o~of QIS

(2, r, b) which is not d-preceded by any otherg~* of QIS ( p, r, b). We define an

ascending quota method with divisor d as a non-empty set of a.q.s with the same

divisor, and denote such a method by AQM(d). Such methods must exist for any

divisor-function d, since no QIS is empty and d-precedence is acyclic. In particular,

if d is defined by d(a) = a +1, the AQ M(d) is PQ.

Given any problem ( p, r, b, h) and any divisor-function d, an apportionment

f(p, r, b, h) belonging to some solution f in AQM(d) may be computed by this

Ascending Quota Algorithm:

(1)

(i)

e T i s e T e St

Initially define o~ to be an empty sequence, its length / tobe 0,

the house-size h' to be h, , and the current apportionment
fprb,h) tobe f(p,r,b, hy) = 1.

Defining a =f ( p, r, b, h'), compute the exact quotas g ( p, r, b,
h*'+1) and find the supereligible set S(h'+1) of states which could

receive the (h'+1) ‘th seat without. violating quota. Define Seq (h'+1)

to be the sequence of indices of S(h'+1), arranged in non-decreasing

order of d(ai)/pi ; Seq (h'+1) will be empty if S{h'+1) is empty. Set
n(h+l) = 1.

I1-9
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(iii) If Seq (h'+l) has fewer than n(h'+l) terms, proceed to (vi);

otherwise, let k denote the n(h'+l) ‘th term.

(iv) Augment the sequence ¢~ with the indexzfi, increase
by 1, increase h'by 1, and define fk (pyry b, h') -
atl, fi(p, r, b, h') =a;fori # k.

(v) If h* <4 h*, go to step (ii); if h* = h*, go to step

(vii).

(vi) Since it is impossible to extend the current sequence ¢~ while
remaining within QIS ( p, r, b), we must delete the last
index of &, decrease its length (f’ by 1, decrease h'
by 1, and then increase n(h'+l) by 1 before returning to

step (iii).

(vii) The desired apportionment is then found by employing the

first h-h, terms of o~ to define f ( p, r, b, h).

11.6 Comments on the Ascending Quota Methods

A dual concept -- the Descending Quota Methods -- may be defined by
an analogous algorithm, which begins with house size h* and works downward,

withdrawing a seat from the supereligible state which maximizes the criterion

d(ai—l)ipi, backtracking as necessary when an empty supereligible set is reached,

and finally ending with house size h,. If the selected state is always appended
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to the beginning of the state index-sequence, we will terminate, for each problem-

set ( p, r, b), with a sequence belonging to GIS ( p, r, b) - in fact, with a sequence

which satisfies an extremum condition dual to the condition used above to define

an ascending quota solution and an Ascending Quota Method. The DQM always

attempt to maximize the criterion d/p for the rightmost state-index of the QIS

set, while the AQM attempt to minimize the same criterion for the leftmost state-
indexes of the same set. Because the total number of appearances of each index

in any QIS is fixed, these criteria are not in direct conflict; but empirical evidence
strongly suggests that we do not need to choose between the methods AQ M(d) .

and D Q M(d), because they seem to be identical. That conjecture has so far been

proven only for some special cases -- e.g., for problems with three states

and one of the five divisor-functions described by Huntingtor | and for d(a) = a+ 1/2.
Having found one apportionment in AQ M(d), we can proceed to find all
others by reconsidering all cases in which a tie occurred for the choice of gaining

state; if there were no such ties, the apportionment is unique.

In the legislative apportionment problem, exact ties are so unlikely that
they are merely nuisances in the mathematical theory; but in the manpower allocation

oroblem, ties are of crucial importance.

In either problem, the incidence of ties may be greatly reduced by redefining
the relation of d-precedence so that, among states with equal ratios d/p ,the

state with larger population should gain the seat first (or, lose it last).
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Numerical calculations should be arranged so that exact integers are employed E

i S,

in lieu of approximate ratios -- this is again of greater importance in the manpower

ol

allocation problem, where exact ties are more likely.

L Mt e feralind e SRRSO 2

In the unlikely event that an attractive Huntington method is found which
is not a divisor method, appropriate modifications could be made in the above

definitions.

Although the coriputation of an AQ M(d) solution is effective, it is long
and seems very inefficient if h* is much greater than h. Some conjectures and

& theorems are provided in Appendix III, which promise to reduce the labor of computing

these new Quota solutions.

: Since the computational methods provided do all make explicit use of the
upper bounds b on the portions of the several states, it is not self-evident that
the introduction of those upper bounds (for a problem which did not naturally
have upper bounds) will have no influence on the answer. The Constitutional upper
limit on the size of a state's delegation ("..shall not exceed one for every thirty
thousand [of pcpu]ation:]")does provide such a natural upper limit in case of
the apportionment of the U.S. House of Representatives, and Appendix III settles
a corresponding question for manpower allocations, but the situation will remain

slightly incomplete until conjectures of Appendix III are proven.

14

Thus, corresponding to each of Huntington's "workable methods", and to

. N L o o
Bt ia iz, """"‘*’Wm‘w&mvm > R Y A R (AR N S vwmwmvﬂ'mwwww”wmww NI s
.

any other divisor function, we have defined a similar method which satisfies quota

v and is monotone. (In fact, if the AQM(d) and DQ M(d) are found to be not always

P A SIS Vo

identical, there will sometimes be two analogs for each Huntington method!)
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APPENDIX III
THEOREMS ON APPORTIONMENT

IIT.1 General

In this appendix, we provide some definitions, conjectures, and
theorems. We define the linear divisor functions and the linear divisor
methods, which seem to have more tractable properties than other Huntington
methods. We show that our Primal Cuota method (which differs from the
Quota method of Balinski and Young only in having an altered definition
of "quota" and including upper bounds on the portions) satisfies their
axioms, and give a detailed proof that the new Dual Quota methcd (see

I1.3 above and Mayberry [é].) satisfies the duals of those axicms.

We show that, under certain circumstances (which we hope to widen
by more general theorems), the upper bounds b and lower bounds r will
have no effect on an apportionment. We show that linear divisor methods
are periodic in the : ouse size h, that the only important non-1inear methods
(HM and EP) are ultimately periodic, and that the Quota analogs of all
those methods (defined in section 11.7 above) share the same periodicity
properties. We show that those same methods will give rise to "ties” at

predictable stages within those periods.

Finally, we offer the opinion that the manpower allocation process
should use the MFQ method (a Quota method related to the method of Major
Fractions), and that the appointment of Congress should either use MFQ
or the Quota analog EPQ of the presently-approved EP method.
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We have two definitions for the quota analog of each divisor method;

only in the self-dual case of MFQ can we prove that they are equivalent.

However, even if examples can be constructed for which the two definitions
lead to different results, there is amgle empirical evidence for the con-
tention that they are usually the same; and both methods will satisfy

quota, avoid the Alabama paradox, and closely resemble the corresponding K

Huntington method. 7

We have conjectures about the similarity of the new quota methods to

P R T S Iy

the previously-known Huntington methods in cases where the results of the

latter satisfy quota, but few proofs; we also remark that the computations

PR

require unusual attention to detail because of the algorithms' susceptibility :

R

to round-off error and because of the tediously recursive form of the basic

e it 1y

definitions. (The magnitude of the computational task is not a significant

factor in selecting an algorithm for the apportionment of Congress, but

will be extremely important when a Quota method is selected to allocate

manpower in the U.S. Navy.)
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I11.2 Restrictions on Divisor Functions

A divisor method of apportionment according to Huntington is a
monotone method, defined with the aid of a divisor function d, where the
state which gains the (h+l)'th seat is the state achieving the maximum
of pj/d(aj); here a denotes the apportionment at house size h. Recalling
that the purpose of the divisor function is to facilitate making the
portions nearly proportional to the respective populations, it is cer-
tainly natural to require that, as the house size increases without limit,
the ratio aj/ap of the portions of two specified states shall tend to the
ratio py/py of their populations. This implies that the ratio d(a)/a

should tend to a non-zero limit as a—ro°.

Since multiplying the divisor-function by a constant does not
change the resulting apportionments, we may, without loss of generality,
assume that d(a)/a-—1 as a—o0o; this is equivalent to assuming that

d{a) = a + c(a), where c(a)/a—0 as a— oo

Now let us also insist that a divisor-function d shall not preclude
the attainment of exact proportionality, whenever the house size and pop-
ulations permit it. More formally, we define a divisor-function d to be
acceptable if, given integers x and y with x/y = pj/py, state 2 will
never receive its (y+1)'th seat until state 1 has received its x'th
seat. This imposes constraints on d, which does not seem to have been

mentioned by Huntington in [}] and [ﬁ] nor by Balinski and Young in

Eia], viz:
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Theorem 1: The divisor function d is acceptable if both
(i) 0%c(a)#l for all a, and
{ii) 1if there is an al with c(al) = 0, then there is no a2 with
c(a2) = 1.
Proof: (Note that Huntington's use of the terms "“greatest divisors" and
“smallest divisors" suggests that he may have been aware of these con-
ditions, although the author considers it more likely that those names
refer only to the fact that, in considering an increase of a portion
from a to a+l, the divisor to represent “"current portion" could reason- ‘

ably be taken as either a, or a+l, or some compromise between them.)

Suppose that, for some integer y~0, we have c(y)<0. (Note that
d(a) must surely be=0, so c(0)=0.) Then choose p2 =y, and define
t = d(y)/y. Since t<l, and d(a)/a->1 as a-»=s we see d(a)/(a+l)—1,
and we can find z 1large enough that d(z)/(z+1)>t. Now, choosing

1
t<d(x-1)/x = d(x-1)/pl, so that state 2 would indeed obtain its (y+1)'th

p, = x = z+1, we find of course that x/y = pl/pz; but d(y)/p2 =

seat before state 1 obtained its x'th, and d is not acceptable. A

similar argument excludes c(a)>1.

The other half of the theorem is shown by noting that x/y = pl/p2
and a%d(a)=<a+l imply d(,y)/pz-?-'y/p2 = x/plad(x-l)/pl, where the first
inequality is strict unless d(y) = y, and the last is strict unless
d(x-1) = x-1 + 1; thus, such a function d is acceptable. This completes

the proof.
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Corollary 1: Any acceptable divisor function d 1is a strictly monotone
increasing function of the non-negative integer a. (It is therefore

superfluous to explicitly require monotonicity in d.)

Corollary 2: A1l linear divisor methods with 0=c<1, and all five of

the methods studied by Huntington (see Section 1.6 above) are acceptable.
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I111.3 Linear Divisor Functions

We say d is a linear divisor function if d(a) = a + ¢ where ¢ s

a constant and 0%c<1. A divisor method based on & linear divisor

function will be called a linear divisor method, and identified as LDM(c)

since the value of the constant ¢ specifies the method cowpletely.

Theorem 2: No linear divisor method, except GD, which is LDM(1), satisfies

lower quota.

Proof: We construct a counter-example for LDM(c) with 0= c<1. Since
] (x-2+c)/x—1 as x—>v2 we can choose an integer x with (x-2+c)/x>c. Then
we define the pure problem with x+1 states, p = (x, 1, 1, ..., 1), and

h = 2x-2. Since d(0)/py = c<(x~2+c)/x, which in tura = d(x-2)/py,

LDM(c) produces the apportionment (x-2, 1, 1, ..., 1), which violates

Tower quota since q; = x-1.

Theorem 2': No linear divisor method, except SD, which is LDM(0), sat-

isfies upper quota.

Proof: (This is of course immediate by duality from the preceding, but

we provide brief details.)

Given LDM(c) with 0<c =1, take x>(1+c)/C, p as above, and h = 2.
Then q; = 1, but state 2 gets the second seat and ap = 2, violating

upper quota.
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State

~N o W N

Total

Exact Quota HM and EP
Population at h = 23 Apportionments
for h = 23
62 15.500 17
5 1.250 1
5 1.250 1
5 1.250 1
5 1.250 1
5 1.250 1
5 1.250 1
92 23.000 23

Table III.1
Example Showing That Both HM and EP

Can Violate Upper Quota (See Theorem 3)
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Theorem 3: Both HM and EP violate both upper and lower quota.

Proof: fable III.1 and the first column of Table III.2 show the necessary

counter-examples.

Theorem 4: SD satisfies upper quota, and GD satisfies lower quota.

Proof: (Note that this theorem extends, to problems involving upper bounds

as well as lower, an unproven part of Theorem 1 of @MCA] and Theorem 2
of [amal.)

Formally, SD is the set of so1utions£ defined by

(1) Pilha) = vy for i = 1,...;

(ii) Recursively for h' = hy+l, hat2,...,h, setting
a=_/('-1), we find k such that a /p, = miny a;/p;

where the set U = (i la1-< bi , and we set

}pk(h') =ak+1, i(h') = ay for i # k,

If ever such a Z fails to satisfy upper quota, let h' be the
first (i.e., lowest) such house size in the problem (p, r, b, h). If
the (h')th seat was assigned to state k, then every state i # k satisfies
upper quota at h' because it did so at h'-1.

We seeZ aj = h' - 1<Z qi(h'), so that for some state m,
ap<ap(h'); m is in U because qu(h')<by.  Also, gu(h')> ap>r,
shows that gg(h') = min(by, py. A (h')). Thus, a,<qy(h')£py. Alh').

e e e —————
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Then, by the choice of k, a /pyZay/pp<A(h'), and a Alh').py,
which is in turn £ qg(h') unless q.(h') = by, and k is in U so < by .
In any case, ag<qy(h') so that Py (h') = a +1<q,(h')+1, showing that
2f does satisfy lower quota at h' and completing the proof.

(The second part of the theorem is dual to the above, and can be
shown by a mechanical translation of each step; one must of course begin

with the downward-recursive definition of GD.)
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IT1.4 Primal Quota and Dual Quota Methods

We have repeatedly described the alterations made in the original
(Primal) Quota method of Balinski and Young as "minor." In this section,
we give that assertion a definite meaning by showing that both the Primal
and Dual Quota methods, as we define them, do satisfy the axioms intro-
duced in [1] (or rather, in the case of the consistency axiom and the
Dual Quota method, the dual axiom). Because the two proofs are dual to
each other, it would be wasteful to prove both; and we prefer to prove
the above assertion in some detail for the dual quota method, since it
differs more from the proof of [é]. In spite of the distinctions, the

proof given below follows the essence of the proofs of Theorems 3 and 4 of

(2l.

Theorem 5: The Dual Quota method DG is monotone, satisfies quota, and

is dual-consistent.

Prcof: (Refer to the definition of DG in I1.3 above.)

By the construction, it is obvious that DQ is monotone (since the
algorithm withdraws one seat from some state for each decrease of the
house size), and dual consistent (since the selection of losing state,
within the dual-eligible set E', depends on a criterion -- the maximiza-
tion of (aj-1)/p; -- governed entirely by populations and previous

portions),

I11-10
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It is also obvious that any solution fin DQ satisfies lower quota,

since_)f(h*) = b = q(h*), and it is only the dual eligible states -- viz,
those whose portions could be decreased without violating lower quota ;
-~ from which the algorithm may withdraw a seat. E'(h-1) is surely non-
empty; sincez a; =h and Zqi(h-l) = h-1, there must be some state i
with a; >q;(h-1). (Note this argument is simpler than that of Theorem 4

of [2:] -- we have thrown some of the effort back into the definition of

PRV N

"exact quota.")

oA gy e

Thus we need "only" show that Z satisfies upper quota. Suppose the

el

contrary; let h°< h* be the first (i.e., greatest) house size at which

K(p_, r, b, h) fails to satisfy upper quota, and let j be a state with a

.
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R

>&j(h°)>uj(ho). Since j satisfied upper quota at hy+l, j is not

e
-

the state which lost the (h,+1)'th seat; and, since %j(ho) -‘-‘-)jb(h*) = by,

we have qj(ho):': uj(hy)< by.

Now define the set M of states under-represented at hy;

AR

M= “‘Ppm(ho)‘qm(ho)}' Obviously j is not in M; but M cannot be
empty sincez ﬂ(ho) = h, =Zq1(h°) andyj(howqj(ho).

Since_}fsatisfies lower quota, for each m in M we have
/m(ho) =ym(h°)4 Gp{hg), and the non-integral qu(,) must equal
Pme ,«Hho). Every state of M has surely lost at least one seat at

some house size h in the range h,=>h >h*. Denote by t the last
‘. state of M to lose a seat for any house size in that range, and by

hy the house size after that loss.

I1-1
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If hy were = h,, and t had Tost the (h +1)'th seat, then
}pt(ho) =>&t(ho+1) -1<q.(h,) because t is in M, while
>”j(h°+1) -1 =71/j(h°)-liqj(ho) by definition of j. Thus
(#4lhg+1)-1/aq (hg)<1% (¥5(hg+1)-1)/qz(h,), so that
(#elhgt)-1/(pg. Athg)) £ (F5lhg#1)-1)/azlhg) £ (F5ng+1)-1)/(ps. A (),
since t is in M and qj(ho) # bj. But J was surely dual-eligible
at hy; thus t was not selected to lose the (h,+1)'th seat, and hy # h,.

Now define K as the set of states to lose a seat at house sizes
h in the range hy>h2hy; formally K ={k lﬂ(ho)‘ff(ht)} . K is not
empty, but (by definition of t) K, M is empty.

In four steps, we 3hall show that

()pk(htﬂ)-l)/pk > (y’t(htﬂ)-l)/pt for every k inK:

First, t is not in K, so}pk(htﬂ)-l =>pk(ht)-1, which in turn
is:?%(ho) by definition of K, which again is?-qk(ho), since k 1is not in
M. Thus, (P (hgtD)=1)/p, = q, (h,)/p, -

Second, gy (o)< i (h)< Yk (hy) S by, so g lhg) =
max(ry, pg-A(h))2pe. A(hy), and qelhg)/p, = (h).

Third, since t is in M, Fy(h)<aglng) = py. Alhg), so that
Alhg)s Filhg) /pg.

Fourth, since t is not in K,/ g(hg) = ¥ilhy), which (by definition
of t) is equal to }”t(htﬂ)-l.




—

Assembling the results of those four steps, we see that
(yk(htﬂ)-l)/pk>(yt(ht+1)-1)/pt, so that any state k 1in the
dual-eligible set E'(hy) would have precluded t from attaining the
maximum at house size hi. But t did attain that maximum, and Tost

the (hy+1)'th seat, hence K ,E'(hy) must be empty, and
Yilng) = F (hy#1) L (hy).
Finally, we deduce a contradiction from:
ht - hO ‘-‘ZK(){/k(ht) ‘}bk(ho) by definition of K;
ZKy’k (hy) ?-ZK g (hy) since K \M is empty;
Z K>Lk (hy) :‘.ZK q (h¢) from preceding paragragh;
ZL Q; (ho)‘ZL q; (h¢), where L is the set of states not

in K, because t fis not in K and qulhy) = py. Alhg)<aglhy).

Assembling those inequalities we obtain:

ht - hO = Z K()ﬁ((ht) }Lk(ho))

-‘-Z: K( qk(ht) - qk(ho))
42 ( qi(ht) - qi(ho))
) he - By

a contradiction which shown that DQ satisfies upper quota and completes

the proof.

Theorem 6: The Primal Quota method is the unique monotone and consistent

method which satisfied quota.
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Proof: This theorem rests entirely on the similar theorem of [Z].

The only differences between our Primal Quota method and the
Quota method of Balinski and Young, are (i) we have permitted a more
general problem, which includes upper bounds on the portions, and
(ii) we have used a slightly different -- and more restrictive --
definition of quota. Since ref. [2] has proved uniqueness for their
definition, it follows that no method other than our Primal Quota can

have the three desired properties for our problem.
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; ‘\ II1.5 Influence of the Upper Bounds and Lower Bo:nds
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In this section, we collect such theorems as we have which concern
the importance of the upper bounds and the lower bounds of the apportion- :
ments which result. Where we have not a theorem, we present a counter-
example; where we have neither, we present a conjecture. The hope is,
that results of this class can free us from the necessity to compute

: step-by-step solutions for an entire problem-set (as specified in some

of the algorithms of Sections II.5 and II.6).

. e

Theorem 7: Changing the upper bounds for a problem will not change the

Primal Quota apportionment unless it changes the exact quotas. i

Proof: Formally, the hypothesis states that g(p, r, b, h) = q(p, r, b', h),
and the conclusion is that there exists a Primal Quota solution }%3 such that
)”' (p, r, b, h) = a, where a = }p(g, r, b, h) is a Primal Quota apportion-

ment for the first problem.

(Note that this theorem does not allow variation of the lower bounds

r.)

It is easy to see that the same value of A (h) may be used to compute
the two exact-quota vectors, and thus that any upper bounds, which are
constraining for either problem at house size h, must be equal. Then

for smaller house sizes h', it is true a fortiori that any constraining

O




upper bounds are equal, so the exact-quota vectors are equal at h' also.

Reference to the definition of the Primal Quota algorithm (Section II1.2) ?

shows that the resulting appointment depends only on the sequence of

exact quotas and constraining upper bounds, proving the theorem.

Dual to the above is Theorem 7': Changing the lower bounds for

the problem will not change the Dual Quota apportionment unless it

changes the exact quotas.

i Notation: The divisor method with divisor-function d will be denoted

by M(d). 3

(v vere v TR T

Definitions: For any problem (p, r, b, h), any divisor-function d, any

state i, and any numberA satisfying r <X < bj, we call & a potential

j-seat, and define the d-criterion for such a potential i-seat to be the

quantity d(e<-1)/p;.

Theorem 8: Suppose )ﬂis a solution belonging to a divisor method M(d),
and we are given two problems, (p, r, b, h} and (p, r', b', h), with

the apportionment }” (p, r, b, h) = a. If the two problems are so related
that we have, for each i, either r;Zr';<ay or r';<ri<aj, and also,
for each i, either a;=b'y=b; or a;=>b;>b';, then there is a solution

% belonging to M(d) with }‘" (p, r', b', h) =a.

Proof: M(d) solves the first problem by first assigning rj seats to

each state 1, and then selecting, from the total h* - hix potential

P e m sy thra s ISR IR S A
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] seats, the h - hy whose d-criterion values are smallest; aj-ry é
3 E
: potential i-seats are thus selected. If ri:Er'i:iai, then r';-r; of %

the potential i-seats selected fcr the first problem are assigned without
competition when the second is solved; if r';<r;<La;, then r; - r';

more potential i-seats must compete when the second problem is solved,

o Bl T el S AN R

ﬁ , but the monotonicity of d shows that they would be selected in any :
L
S case before the (a;)th potential i-seat, which was actually selected. ¢
© :
f ! Similar arguments for the upper bounds complete the proof. § f
o
‘E é
> :
%' :
E o 1'?
.
9
{
Y ]
2 40




. Lol e oot Sy e e el Tt
WSS I AL £ i Cen Ve eme

R IR YR,

PR T R B

Ty

W A F1 s
-

o~
i

Proof: (Recall that the definition of "(apportionment) problem" required

R m————
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I11.6 Periodicity of Apportionment Solutions

When these apportionment methods are applied to such problems as man-
power allocation, the possibility arises that the number to be apportioned
-~ the "house size" -- might exceed, perhaps by a substantial factor, the
sum of the nurbers -- the "populations" -- on which the proportionality
is based. Such a circumstance, in the legislative-apportionment or pro-
portional-representation problems, would imply that the number of seats in

the legislature exceeded the total electorate, and so has been inevitably

disregarded h2retofore.

Under the circumstances when the house size greatly exceeds the sum

of the populations, we find that most methods which have ever been proposed

are either periodic, or ultimately become periodic. (It is even true of

the Hamilton method.)

Theorem 9: If P denotes the suméapi, and P denotes an s-vector all
of whose components are equal to P, then )’(B,,g,'g, P) =p if ¥ is a
solution belonging to any divisor method, any quota method, or the Hamilton

method.

that the p; be positive integers.)

Because the exact quotas are just the populations, a method which

satisfies quota must produce the integral apportionment p.

111-18
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Because exact proportionality is possible for this problem, any

acceptable divisor method will achieve it. (See Section III.2 above.)

Because g(P) =p, h -Zﬁ = 0, and the Hamilton method is trivial
for this problem.

Theorem 10: Linear divisor methods, when applied to a sequence of pure

problems with house size increasing without limit, produce a sequence of

gaining states which is periodic with period P =2?pi.

Proof: By the preceding theorem, state i must get p; of the first

P seats, for each 1. Then the choice of gaining seat at house size

P+1 will be governed by the criteria dlpy)/p;, for i =1, 2, ..., s.

But the linear divisor methods have divisors such that d(a) = atc, so

that d(p;)/p; = (py+c)/pj = 1 + d(0)/p;; thus the order-relations for

the criteria at h = P+l are identical with those at h = 1. If ties

are broken for h between P and 2P-1 as they were for h between

0 and P-1, we find that each criterion at house size P+h s greater

by 1 than the corresponding criterion at house size h, and the periodicity

is established.

Theorem 11: A1l the quota methods of Appendix I1 which depend on a linear

divisor-function are periodic in h with period P, when applied to a

sequence of pure problems with common population-vector p.

Proof: Examination of the algorithms in Sections I1I.2, II.3, II.5, and

I1.6 shows that the selection of gaining or losing state is always based

n 9 - vy s v e A ek s s
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SD $DQ=DQ
House HM HMQ MF MFQ GD GDQ=PQ Hami 1ton
Size EP EPQ
0 0000 0000 0000 0000 i
1 1000 0001 0001 0001
2 (1100) 1001 0011 0011 0011
3 (1110) 1011 0012 9012 0012
4 (1111) 1012 0022 0022 0022
;| 5 1112 1022 0023 0023 0023
! 6 (1122) 1023 1023 (0024) 0033 1023
; 7 1123 1123 0034 1123
1 8 (1133) 1124 (1133) 1124 (0035) 1034 1034
9 1134 1134 0045 1035 1134
‘ 10 1135 1135 (1046) 1045 1135
43 11 1145 1145 1046 1145
12 1146 1146 1146 1146
13 1156 1156 1156 1156
14 1157 1157 1157 1157

Table III. 2

B

The Apportionments Generated by

Eleven Distinct Methods: ’

SD (Smallest Divisors) and its Quota Analog SDQ (= Dual Quota)
HM (Harmonic Mean) and its Quota Analog HMQ

EP (Equal Proportions) and its Quota Analog EPQ

MF (Major Fraction) and its Quota Analog MFQ

GD (Greatest Divisors) and its Quota Analog GDQ (= Primal Quota)
Hamilton (= Vinton Method of 1850)

(A11 these methods applied to the Pure Problems with
p=1(1,1,5,7) and 04 h £14.)

Notes: (i) A1l ties were resolved by giving the seat to the
“first among equals";
O (11)  Apportionments in parentheses violate quota;
(1ii) Alabama Paradox exhibited at h = 8.

o i it e e e , -
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on the exact quotas, and the criteria d(a)/p. When the house size increases
by P, each exact quota increases by p; and each previous portion increases
by pj, and each criterion d(a)/p increases by 1; thus, the eligible sets are
identical, and the state to be selected within the eligible set is identical;
an empty eligible set (causing a backtrack) will also be repeated at

intervals of P in the house size.

For the Dual Quota and other descending quota methods, the allocations
must begin with some multiple of P seats; then the same sequence ofilosing
seats will be found within each consecutive block of P seats. The
sequence does not depend on what multiple of P is used as the initial
house size; Theorem 9 shows that the initial allocation for a house of

size n.P is simply n.p.

Theorem 12: When applied to a sequence of pure problems with common population
p and increasing house sizes, the method EP, HM, EPQ, and HMQ ultimately
attain one of the same periods as the methods MF, MF, MFQ, and MF), respec-

tively.
Proof: Define f(a) to be the difference a + 1/2 -va(a+l) between the

divisor a + 1/2 used in MF and the divisor v'a{a+l) used in EP.

The Major Fractions criterion, when applied tc all the P potential
seats in a house of size P, takes on at most P distinct values; there

is a least positive difference e between unequal values of that criterion.

I11-21
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(That least difference is the same in each succeeding block of P seats,

because each of the criteria is increased by 1.)

Since f(a)—>0 as a—>»<3 we can find x such that fla)< e
whenever a > x. For h 1large enough, all portions will exceed x, and

thereafter EP will duplicate a periodic sequence produced by MF,

The same argument shows that HM ultimately duplicates a period of

E MF and (noting that the sequence of supereligible sets is also periodic)

that each of EPQ and HMQ must ultimately duplicate a periodic behavior of

o

MFQ.

r Theorem 13: The periodic sequence of P gaining states which results when

LDM(c) is applied to a sequence of pure problems with population p may be
% chosen to be the reverse of the sequence of gaining states resulting from

application of LOM(1-c) to the same pure problems.

Proof: It is only necessary to note that, if LDM(c) has given m seats

to state 1 and n seats to state 2, then the next gainiag state is

chosen by comparing criteria 1ike (m+c)/py and (n+c)/py; while a descending

algorithm for LDM(1-c), which has withdrawn m seats from state 1 and

n seats from state 2 after beginning with the apportionment p at house
i' size P, will ceject the next losing state by comparing (py-m-1+(1-c))/p;
: vith (pp-n-1+(1-c))/py; but the former is equal to 1 - (m+c)/p; and the
latter to 1 - (n+c)/py, so the ordering (when definite) will be reversed.

Since the ascending algorithm awards the next seat to the state whose

)
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criterion is least, while the descending algorithm withdraws the seat from
the state whose criterion is greatest, the downward sequence of losses in

LDM(1-c) can be chosen to duplicate the upward sequence of gains in LDM(c).

Corollary: The reverse of a valid P-se. . : for MF, which is LDM(1/2),
may be chosen as a valid P-sequence for the _ame sequence of pure problems.
(We cannot say that a P-sequence for MF must be palindromic; that would be

obviously impossible if more than one of the pj were odd. )

Theorem 14: The sequence of gaining states in the ascending quota mefhod

based on LDM(c) can be chosen to be identical with the sequence of losing

vt YA AR R S IR R IR - e r e -
oty .

states in the descending quota analog of LDM(1-c), for pure problems.

Proof: Can be easily verified by checking the definitions of supereligible
sets, criteria, and quotas; the relation among those entities parallels

the relations of the preceding theorem.

Corollary: For the pure problem, the ascending quota method based on MF,
which is LDM(1/2), is identical with the descending quota method based

on MF. This quota method can thus be called the MFQ method.

Theorem 15: If LDM(c), or its quota analog, is applied to a sequence
of pure problems with one or more of the p; =1, those “singleton”

states will tend to get their single seat when the large states have

e ey tessew Aien e
st o A SO

obtained the fraction c¢ of their share of the first P seats.

Proof: The criterion, for the potential seat of a singleton state, will

RN

be d(0)/1 = ¢; thus the singleton states wili be nearly tied with a large

SRR

state (j, say) when the latter has received 3y seats, where d(aj)/pj =c

e

,.
& /.»"f,é:t""""}(n.’ Xz

nearly; but if Pj is large, that implies ay is nearly C. pj.

3
)
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I11.7 Backtracking

As stated in Section I1.5, backtracking will be required (for some
problem-set) in every ascending quota method except PQ, and in every

descending quota method except DQ.

Table I11.2 shows examples of several such methods applied to the
pure problems with p = (1, 1, 5, 7). Note that the apportionment
(1, 1, 1, 2) satisfies quota but cannot be continued in the ascending
direction; the exact quota for h =6 is (3/7, 3/7, 15/7, 3), so
both states 3 and 4 would have to gain the 6'th seat in order to
satisfy quota. Therefore, we know that the apportionment (1, 1, 1, 2)

cannot result from any monotone solution satisfying quota.

The apportionment (0, 0, 4, 5), which is complementary to the
above, aiso satisfies quota; however, this latter cannot be continued
in the descending direction because the exact quota for h = 8 is
(4/7, 4/7, 20/7, 4), so poth states 3 and 4 would have to lose a
seat in order to satisfy quota. No monotone quota solution can pro-

duce (0, 0, 4, 5) either.

These examples show why it is necessary to find apportionments
for an entire problem-set {including all house sizes from nx to h*),
and not only for one or other of the intervals from hx to h, or from
h to h*; although (0, 0, &4, 5) is inaccessible to any ascending quota
algorithm, it may be found by certain descending quota algorithms --
in fact, it is found by descending GDQ -- though it must later be

I11-24
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eliminated by a backtrack. (Our conjecture, Section II.6, would imply
that the descending GDQ method is identical with ascending GDQ, which

is of course simply the Primal Quota method PQ.)

Table III1.2 gives, for the pure problem set defined by p = (1, 1, §, 7),
the apportionments generated by all five of Huntington's methods and by
their quota analogs. (Because of Theorems 10 and 11, we need only specify
apportionments for house sizes between 0 andz p; =14 inclusive. ).

We do not distinguish between the ascending and descending quota methods,
because we have no example where the resulting apportionments are different.
A1l the results of this table assume that ties are broken by selecting the
"first among equals” as the gaining state and the "last among equals" as the

losing state.

Although the apportionments (0, 0, 4, §) and (1, 1, 1, 2) both
satisfy quota, and can each be reached by either an a.q. method or
a d.gq. method but not both, neither of them can occur in a monotone quota
solution. We may ask whether there are apportionments satisfying quota
which cannot be reached by any quota algorithm. The answer is "yes";
there are, in fact, sets of apportionments ("enclaves") which cannot be
reached either from hx or from h'. A simple example is the apportion-
ment (0, 0, 2, 2) in the pure problem set with p = (3, 3, 4, 4); when
h = 3, the exact quotas are (9/14, 9/14, 6/7, 6/7), so that the 4'th
seat would have to be withdrawn from both states 3 and 4, and when
h = 5, the exact quotas are (15/14, 15/14, 10/7, 10/7), so that the
5'th seat would have to be given to both states 1 and 2.
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It is interesting to speculate on a possible maximum size of enclave
-- presumably depending on the number s of states and the population-
vector p for a pure problem, and also on the bounds r and b for a
constrained problem. Theorems to this effect could avoid the need to always

begin an a.q. algorithm with hx and a d.q. algorithm with h*.
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IT1.9 Non-Integral Populations

Many of the above theorems depend on the assumption that the population
vectors are integral, and would not be true if the p; were relatively
irrational. Actual census populations, of course, are always integers
-- even the original "three-fifths of a man" in the U.S. Constitution
resulting in rational population vectors -- but relative priorities, which
need not be rational fractions, may be used in some manpower-allocation

problems as a basis for apportiorment of available men or spaces.

Those manpower problems, and cther conceivable applications of these
apportionment methods, will almost always possess natural constraints r
and b, and the properties specified by those theorems will thus be of
lesser importance in those cases. Theorem 14 (which applies that the
ascending MFQ and the descending MFQ methods are identical) does depend
on the integrality of p, but the loss of that theorem seems to be the

only practical consequence of using non-integral values in place of pop-

utations p.

(From the mathematical standpoint, a pure problem with irrational p
would be almost-periodic in a well-defined sense, but that fact seems

to be irrelevant to any contemplated applications.)
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I1I1.10 Recommendations

Because the periodicity seems an attractive and elegant notion, I
favor the use of a linear-divisor quota method for manpower allocation;
among these, MFQ would be ny first choice, because it is well-defined,
because it avoids the inconvenient ties when a distributable community
is slightly over-manned or slightly under-manned, and because the middle
seems like a gocd compromise. However, as stated in Section II above, DQ
ought to be used for the qualitative Phase IV.

Primarily on the grounds of mathematical elegance, I would favor the
same method for legislative apportionment. On the other hand, existing
legislation specifies EP -- so that the Congress might be more receptive
to EPQ than to MFQ. This would be especially true if 1t could be proven
that EPQ always agrees with EP, whenever the latter satisfies quota.
(That seems very likely, but has been so difficult to prove that I now
suspect the existence of rare counter-examples.) The difference between
EPQ and MFQ is 1ikely to be miniscule; every state must have one repre-
sentative anyway, and even at a = 1 (i.e., when considering whether or
not a state gets its second seat), we find that EP gives d(1) = 1.414,
MF gives d(1) = 1.500 -- a difference of only 6%. Such small differences
as do exist would tend to make EP favor the small states -- i.e., a
doubtful state is more likely to get its second seat with EP than with
M.
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(ARC)
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